Machine learning assembly landscapes from particle tracking data.
نویسندگان
چکیده
Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional materials. Rational engineering of self-assembling systems requires understanding of the accessible aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental conditions. To the best of our knowledge, this represents the first time that collective order parameters and assembly landscapes have been inferred directly from experimental data. We apply this technique to the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant assembly pathways and terminal aggregates. This combined computational and experimental framework furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering of experimental conditions to drive assembly along desired aggregation pathways.
منابع مشابه
Stock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملMachine learning for graph-based representations of three-dimensional discrete fracture networks
Structural and topological information play a key role in modeling of flow through fractured rock. Discrete fracture network (DFN) computational suites such as dfnWorks [23] are designed to simulate flow and transport in such media. Transport calculations that use a particle tracking method reveal that a small backbone of fractures exists where most transport occurs providing a significant redu...
متن کاملVisual Tracking with Online Incremental Deep Learning and Particle Filter
To solve the problem of tracking the trajectory of a moving object and learning a deep compact image representation in the complex environment, a novel robust incremental deep learning tracker is presented under the particle filter framework. The incremental deep classification neural network was composed of stacked denoising autoencoder, incremental feature learning and support vector machine ...
متن کاملAn Online Learning-based Framework for Tracking
We study the tracking problem, namely, estimating the hidden state of an object over time, from unreliable and noisy measurements. The standard framework for the tracking problem is the generative framework, which is the basis of solutions such as the Bayesian algorithm and its approximation, the particle filters. However, these solutions can be very sensitive to model mismatches. In this paper...
متن کاملParticle swarm optimization for minimizing total earliness/tardiness costs of two-stage assembly flowshop scheduling problem in a batched delivery system
This paper considers a two-stage assembly flow shop scheduling problem. When all parts of each product are completed in the first stage, they are assembled into a final product on an assembly machine in the second stage. In order to reduce the delivery cost, completed products can be held until completion of some other products to be delivered in a same batch. The proposed problem addresses sch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Soft matter
دوره 11 41 شماره
صفحات -
تاریخ انتشار 2015